The thyroid gland, located in the anterior neck just below the cricoid cartilage, consists of 2 lobes connected by an isthmus. Follicular cells in the gland produce the 2 main thyroid hormones:
Tetraiodothyronine (thyroxine, T4)
Triiodothyronine (T3)
These hormones act on cells in virtually every body tissue by combining with nuclear receptors and altering expression of a wide range of gene products. Thyroid hormone is required for normal brain and somatic tissue development in the fetus and neonate, and, in people of all ages, regulates protein, carbohydrate, and fat metabolism.
T3 is the most active form in binding to the nuclear receptor; T4 has only minimal hormonal activity. However, T4 is much longer lasting and can be converted to T3 (in most tissues) and thus serves as a reservoir or prohormone for T3. A 3rd form of thyroid hormone, reverse T3 (rT3), has no metabolic activity; levels of rT3 increase in certain diseases.
Additionally, parafollicular cells (C cells) secrete the hormone calcitonin, which is released in response to hypercalcemia and lowers serum calcium levels (see Regulation of Calcium Metabolism Regulation of Calcium Metabolism Calcium (Ca) is required for the proper functioning of muscle contraction, nerve conduction, hormone release, and blood coagulation. In addition, proper calcium concentration is required for... read more ).
Synthesis and Release of Thyroid Hormones
Synthesis of thyroid hormones requires iodine (see figure Synthesis of thyroid hormones Synthesis of thyroid hormones ). Iodine, ingested in food and water as iodide, is actively concentrated by the thyroid and converted to organic iodine (organification) within follicular cells by thyroid peroxidase. The follicular cells surround a space (follicle) filled with colloid, which consists of thyroglobulin, a glycoprotein containing tyrosine within its matrix. Tyrosine in contact with the membrane of the follicular cells is iodinated at 1 (monoiodotyrosine) or 2 (diiodotyrosine) sites and then coupled to produce the 2 forms of thyroid hormone.
Diiodotyrosine + diiodotyrosine → T4
Diiodotyrosine + monoiodotyrosine → T3
Synthesis of thyroid hormones
![]() |
T3 and T4 remain incorporated in thyroglobulin within the follicle until the follicular cells take up thyroglobulin as colloid droplets. Once inside the thyroid follicular cells, T3 and T4 are cleaved from thyroglobulin.
Free T3 and T4 are then released into the bloodstream, where they are bound to serum proteins for transport. The primary transport protein is thyroxine-binding globulin (TBG), which has high affinity but low capacity for T3 and T4. TBG normally carries about 75% of bound thyroid hormones.
The other binding proteins are
Thyroxine-binding prealbumin (transthyretin), which has high affinity but low capacity for T4
Albumin, which has low affinity but high capacity for T3 and T4
About 0.3% of total serum T3 and 0.03% of total serum T4 are free and in equilibrium with bound hormones. Only free T3 and free T4 are available to act on the peripheral tissues.
All reactions necessary for the formation and release of T3 and T4 are controlled by thyroid-stimulating hormone (TSH), which is secreted by pituitary thyrotropic cells. TSH secretion is controlled by a negative feedback mechanism in the pituitary: Increased levels of free T4 and T3 inhibit TSH synthesis and secretion, whereas decreased levels increase TSH secretion. TSH secretion is also influenced by thyrotropin-releasing hormone (TRH), which is synthesized in the hypothalamus. The precise mechanisms regulating TRH synthesis and release are unclear, although negative feedback from thyroid hormones inhibits TRH synthesis.
Most circulating T3 is produced outside the thyroid by monodeiodination of T4. Only one fifth of circulating T3 is secreted directly by the thyroid.
Laboratory Testing of Thyroid Function
Thyroid-stimulating hormone (TSH) measurement
TSH measurement is the best means of determining thyroid dysfunction (see table Results of Thyroid Function Tests in Various Clinical Situations Results of Thyroid Function Tests in Various Clinical Situations ). Normal results essentially rule out hyperthyroidism Hyperthyroidism Hyperthyroidism is characterized by hypermetabolism and elevated serum levels of free thyroid hormones. Symptoms include palpitations, fatigue, weight loss, heat intolerance, anxiety, and tremor... read more
or hypothyroidism Hypothyroidism Hypothyroidism is thyroid hormone deficiency. Symptoms include cold intolerance, fatigue, and weight gain. Signs may include a typical facial appearance, hoarse slow speech, and dry skin. Diagnosis... read more
, except in patients with central hypothyroidism due to disease in the hypothalamus or pituitary gland or in rare patients with pituitary resistance to thyroid hormone. Serum TSH can be falsely low in very sick people, especially in patients receiving glucocorticoids or dopamine (see Euthyroid Sick Syndrome Euthyroid Sick Syndrome Euthyroid sick syndrome is a condition in which serum levels of thyroid hormones are low in patients who have nonthyroidal systemic illness but who are actually euthyroid. Diagnosis is based... read more ) .
Changes in the serum TSH level in the presence of normal serum T4, free T4, serum T3, and free T3 levels define the syndromes of subclinical hyperthyroidism Management of subclinical hyperthyroidism Hyperthyroidism is characterized by hypermetabolism and elevated serum levels of free thyroid hormones. Symptoms include palpitations, fatigue, weight loss, heat intolerance, anxiety, and tremor... read more (low serum TSH) and subclinical hypothyroidism Subclinical hypothyroidism Hypothyroidism is thyroid hormone deficiency. Symptoms include cold intolerance, fatigue, and weight gain. Signs may include a typical facial appearance, hoarse slow speech, and dry skin. Diagnosis... read more
(elevated serum TSH).
Thyroxine (T4) measurement
Total serum T4 is a measure of bound and free hormone. Changes in levels of thyroid hormone–binding serum proteins produce corresponding changes in total T4, even though levels of physiologically active free T4 are unchanged. Thus, a patient may be physiologically normal but have an abnormal total serum T4 level. Free T4 in the serum can be measured directly, avoiding the pitfalls of interpreting total T4 levels.
Free T4 index is a calculated value that corrects total T4 for the effects of varying amounts of thyroid hormone–binding serum proteins and thus gives an estimate of free T4 when total T4 is measured. The thyroid hormone–binding ratio or T4 resin uptake is used to estimate protein binding. Free T4 index is readily available and compares well with direct measurement of free T4.
Triiodothyronine (T3) measurement
Total serum T3 and free T3 can also be measured. Because T3 is tightly bound to TBG (although 10 times less so than T4), total serum T3 levels are influenced by alterations in serum TBG level and by drugs that affect binding to TBG. Free T3 levels in the serum are measured by the same direct and indirect methods (free T3 index) described for T4 and are used mainly for evaluating thyrotoxicosis.
Thyroxine-binding globulin (TBG)
TBG can be measured. It is increased in pregnancy, by estrogen therapy or estrogen-progestin oral contraceptive use, and in the acute phase of infectious hepatitis Overview of Acute Viral Hepatitis Acute viral hepatitis is diffuse liver inflammation caused by specific hepatotropic viruses that have diverse modes of transmission and epidemiologies. A nonspecific viral prodrome is followed... read more . TBG may also be increased by an X-linked mutation in the gene encoding TBG. It is most commonly decreased by illnesses that reduce hepatic protein synthesis, use of anabolic steroids, the nephrotic syndrome, and excessive corticosteroid use. Large doses of certain drugs, such as phenytoin and aspirin and their derivatives, displace T4 from its binding sites on TBG, which spuriously lowers total serum T4 levels.
Autoantibodies to thyroid peroxidase
Autoantibodies to thyroid peroxidase are present in almost all patients with Hashimoto thyroiditis Hashimoto Thyroiditis Hashimoto thyroiditis is chronic autoimmune inflammation of the thyroid with lymphocytic infiltration. Findings include painless thyroid enlargement and symptoms of hypothyroidism. Diagnosis... read more (some of whom also have autoantibodies to thyroglobulin) and in most patients with Graves disease. These autoantibodies are markers of autoimmune disease but probably do not cause disease. However, an autoantibody directed against the thyroid-stimulating hormone receptor on the thyroid follicular cell is responsible for the hyperthyroidism in Graves disease. Antibodies against T4 and T3 may be found in patients with autoimmune thyroid disease and may affect T4 and T3 measurements but are rarely clinically significant.
Thyroglobulin
The thyroid is the only source of thyroglobulin, which is readily detectable in the serum of healthy people and is usually elevated in patients with nontoxic or toxic goiter. The principal use of serum thyroglobulin measurement is in evaluating patients after near-total or total thyroidectomy (with or without iodine-131 ablation) for differentiated thyroid cancer. Normal or elevated serum thyroglobulin values indicate the presence of residual normal or cancerous thyroid tissue in patients receiving TSH-suppressive doses of levothyroxine or after withdrawal of levothyroxine. However, thyroglobulin antibodies interfere with thyroglobulin measurement.
Screening for thyroid dysfunction
Screening for thyroid disease is recommended for all newborns to detect congenital hypothyroidism Congenital hypothyroidism Hypothyroidism is thyroid hormone deficiency. Symptoms in infants include poor feeding and growth failure; symptoms in older children and adolescents are similar to those of adults but also... read more , which may impair normal development if untreated.
Routine screening for asymptomatic adults including pregnant women without known risk factors for thyroid disease is not recommended due to insufficient evidence of a benefit. For patients with risk factors, the serum TSH should be measured and is the best test to screen for both hyper- and hypothyroidism.
Because of the increased prevalence of subclinical hypothyroidism Subclinical hypothyroidism Hypothyroidism is thyroid hormone deficiency. Symptoms include cold intolerance, fatigue, and weight gain. Signs may include a typical facial appearance, hoarse slow speech, and dry skin. Diagnosis... read more in older adults, some authorities recommend screening on an annual basis for those > age 70, although it is uncertain whether treating older persons detected with subclinical hypothyroidism has any benefit.
Radioactive Iodine Uptake and Imaging
Radioactive iodine uptake can be measured. A trace amount of radioiodine is given orally or intravenously; a scanner then detects the amount of radioiodine taken up by the thyroid. The preferred radioiodine isotope is iodine-123, which exposes the patient to minimal radiation (much less than iodine-131). Thyroid iodine-123 uptake varies widely with iodine ingestion and is low in patients exposed to excess iodine.
The test is valuable in the differential diagnosis of hyperthyroidism Diagnosis Hyperthyroidism is characterized by hypermetabolism and elevated serum levels of free thyroid hormones. Symptoms include palpitations, fatigue, weight loss, heat intolerance, anxiety, and tremor... read more (high uptake in Graves disease, low uptake in thyroiditis). It may also help in the calculation of the dose of iodine-131 needed for treatment of hyperthyroidism.
Imaging using a scintillation camera can be done after radioisotope administration (radioiodine or technetium 99m pertechnetate) to produce a graphic representation of isotope uptake. Focal areas of increased (hot) or decreased (cold) uptake help distinguish areas of possible cancer (thyroid cancers exist in < 1% of hot nodules compared with 10 to 20% of cold nodules).