MSD Manual

Please confirm that you are a health care professional

Loading

Peripheral Arterial Disease

(Peripheral Vascular Disease)

By

Koon K. Teo

, MBBCh, PhD, McMaster University, Hamilton, Ontario, Canada

Last full review/revision Jul 2019| Content last modified Jul 2019
Click here for Patient Education
Topic Resources

Peripheral arterial disease (PAD) is atherosclerosis of the extremities (virtually always lower) causing ischemia. Mild PAD may be asymptomatic or cause intermittent claudication; severe PAD may cause rest pain with skin atrophy, hair loss, cyanosis, ischemic ulcers, and gangrene. Diagnosis is by history, physical examination, and measurement of the ankle-brachial index. Treatment of mild PAD includes risk factor modification, exercise, antiplatelet drugs, and cilostazol or possibly pentoxifylline as needed for symptoms. Severe PAD usually requires angioplasty or surgical bypass and may require amputation. Prognosis is generally good with treatment, although mortality rate is relatively high because coronary artery or cerebrovascular disease often coexists.

Etiology

Prevalence of peripheral arterial disease (PAD) is about 12% in the US; men are affected more commonly than women. Risk factors are the same as those for atherosclerosis: increasing age, hypertension, diabetes, dyslipidemia (high low-density lipoprotein [LDL] cholesterol, low high-density lipoprotein [HDL] cholesterol), cigarette smoking (including passive smoking) or other forms of tobacco use, and a family history of atherosclerosis. Obesity, male sex, and a high homocysteine level are also risk factors.

Atherosclerosis is a systemic disorder; 50 to 75% of patients with PAD also have clinically significant coronary artery disease (CAD) or cerebrovascular disease. However, CAD may be silent in part because PAD may prevent patients from exerting themselves enough to trigger angina.

Symptoms and Signs

Typically, peripheral arterial disease causes intermittent claudication, which is a painful, aching, cramping, uncomfortable, or tired feeling in the legs that occurs during walking and is relieved by rest. Claudication usually occurs in the calves but can occur in the feet, thighs, hips, buttocks, or, rarely, arms. Claudication is a manifestation of exercise-induced reversible ischemia, similar to angina pectoris. As PAD progresses, the distance that can be walked without symptoms may decrease, and patients with severe PAD may experience pain during rest, reflecting irreversible ischemia. Rest pain is usually worse distally, is aggravated by leg elevation (often causing pain at night), and lessens when the leg is below heart level. The pain may be burning, tightening, or aching, although this finding is nonspecific.

About 20% of patients with peripheral arterial disease are asymptomatic, sometimes because they are not active enough to trigger leg ischemia. Some patients have atypical symptoms (eg, nonspecific exercise intolerance, hip or other joint pain).

Mild PAD often causes no signs. Moderate to severe PAD commonly causes diminished or absent peripheral (popliteal, tibialis posterior, dorsalis pedis) pulses; Doppler ultrasonography can often detect blood flow when pulses cannot be palpated.

When below heart level, the foot may appear dusky red (called dependent rubor). In some patients, elevating the foot causes loss of color and worsens ischemic pain; when the foot is lowered, venous filling is prolonged (> 15 seconds). Edema is usually not present unless the patient has kept the leg immobile and in a dependent position to relieve pain. Patients with chronic PAD may have thin, pale (atrophic) skin with hair thinning or loss. Distal legs and feet may feel cool. The affected leg may sweat excessively and become cyanotic, probably because of sympathetic nerve overactivity.

As ischemia worsens, ulcers may appear (typically on the toes or heel, occasionally on the leg or foot), especially after local trauma. The ulcers tend to be surrounded by black, necrotic tissue (dry gangrene). They are usually painful, but people with peripheral neuropathy due to diabetes or alcoholism may not feel them. Infection of ischemic ulcers (wet gangrene) occurs readily, causing rapidly progressive cellulitis.

The level of arterial occlusion influences location of symptoms. Aortoiliac PAD may cause buttock, thigh, or calf claudication; hip pain; and, in men, erectile dysfunction (Leriche syndrome). In femoropopliteal PAD, claudication typically occurs in the calf; pulses below the femoral artery are weak or absent. In PAD of more distal arteries, femoropopliteal pulses may be present, but foot pulses are absent.

Arterial occlusive disease occasionally affects the arms, epecially the left proximal subclavian artery, causing arm fatigue with exercise and occasionally embolization to the hands.

Diagnosis

  • Ankle-brachial index

  • Ultrasonography

  • Angiography before surgery

Peripheral arterial disease is suspected clinically but is underrecognized because many patients have atypical symptoms or are not active enough to have symptoms. Spinal stenosis may also cause leg pain during walking but can be distinguished because the pain (called pseudoclaudication) requires sitting, not just rest, for relief, and distal pulses remain intact.

Diagnosis is confirmed by noninvasive testing. First, bilateral arm and ankle systolic blood pressure (BP) is measured; because ankle pulses may be difficult to palpate, a Doppler probe may be placed over the dorsalis pedis or posterior tibial arteries. Doppler ultrasonography is often used, because pressure gradients and pulse volume waveforms can help distinguish isolated aortoiliac PAD from femoropopliteal PAD and below-the-knee PAD.

A low ( 0.90) ankle-brachial index (ratio of ankle to arm systolic BP) indicates PAD, which can be classified as mild (0.71 to 0.90), moderate (0.41 to 0.70), or severe ( 0.40). If the index is normal (0.91 to 1.30) but suspicion of PAD remains high, the index is determined after exercise stress testing. A high index (> 1.30) may indicate noncompressible leg vessels (as occurs in Mönckeberg arteriosclerosis with calcification of the arterial wall).

If the index is > 1.30 but suspicion of PAD remains high, additional tests (eg, Doppler ultrasonography, measurement of BP in the first toe using toe cuffs) are done to check for arterial stenoses or occlusions. Ischemic lesions are unlikely to heal when systolic BP is < 55 mm Hg in patients without diabetes or < 70 mm Hg in patients with diabetes; below-the-knee amputations usually heal if BP is 70 mm Hg. Peripheral arterial insufficiency can also be assessed by transcutaneous oximetry (TcO2). A TcO2 level < 40 mm Hg is predictive of poor healing, and a value < 20 mm Hg is consistent with critical limb ischemia.

Angiography provides details of the location and extent of arterial stenoses or occlusion; it is a prerequisite for surgical correction or percutaneous transluminal angioplasty (PTA). It is not a substitute for noninvasive testing because it provides no information about the functional significance of abnormal findings. Magnetic resonance angiography and CT angiography are noninvasive tests that may eventually supplant contrast angiography.

Treatment

  • Risk factor modification

  • Exercise

  • Antiplatelet drugs

  • Sometimes pentoxifylline or cilostazol for claudication

  • Angiotensin-converting enzyme (ACE) inhibitors

  • Percutaneous transluminal angioplasty (PTA) or surgery for severe disease

All patients require aggressive risk factor modification for relief of peripheral arterial disease symptoms and prevention of cardiovascular disease (CVD), including smoking cessation (essential); control of diabetes, dyslipidemia, and hypertension; structured exercise therapy; and dietary changes. In addition to statins, ACE inhibitors, and aspirin to reduce the risk of CVD (see Treatment of Atherosclerosis), a recent randomized, placebo-controlled trial showed that low-dose rivaroxaban when added to aspirin alone reduced CVD events and major adverse limb events, including amputation (1). Beta-blockers are safe unless PAD is very severe (2).

Exercise—35 to 50 minutes of treadmill or track walking in an exercise-rest-exercise pattern 3 to 4 times a week—is an important but underused treatment. Supervised exercise programs are probably superior to unsupervised programs. Exercise can increase symptom-free walking distance and improve quality of life. Mechanisms probably include increased collateral circulation, improved endothelial function with microvascular vasodilation, decreased blood viscosity, improved RBC filterability, decreased ischemia-induced inflammation, and improved oxygen extraction.

Patients are advised to keep the legs below heart level. For pain relief at night, the head of the bed can be elevated about 10 to 15 cm (4 to 6 inches) to improve blood flow to the feet.

Patients are also advised to avoid cold and drugs that cause vasoconstriction (eg, pseudoephedrine, contained in many sinus and cold remedies).

Preventive foot care is crucial, especially for patients with diabetes. It includes daily foot inspection for injuries and lesions; treatment of calluses and corns by a podiatrist; daily washing of the feet in lukewarm water with mild soap, followed by gentle, thorough drying; and avoidance of thermal, chemical, and mechanical injury, especially that due to poorly fitting footwear. Foot ulcer management is discussed elsewhere.

Drug treatment

Antiplatelet drugs may modestly lessen symptoms and improve walking distance in patients with peripheral arterial disease; more importantly, these drugs modify atherogenesis and help prevent acute coronary syndromes and transient ischemic attacks. Options include aspirin 81 to 162 mg orally once a day, aspirin 25 mg plus dipyridamole 200 mg orally once a day, and clopidogrel 75 mg orally once a day or ticlopidine 250 mg orally twice a day with or without aspirin. Aspirin is typically used alone first, followed by addition or substitution of other drugs if peripheral arterial disease progresses.

For relief of claudication, pentoxifylline 400 mg orally 3 times a day with meals or cilostazol 100 mg orally twice a day may be used to relieve intermittent claudication by improving blood flow and enhancing tissue oxygenation in affected areas; however, these drugs are no substitute for risk factor modification and exercise. Use of pentoxifylline is controversial because evidence of its effectiveness is mixed. A trial of 2 months may be warranted because adverse effects are uncommon and mild. The most common adverse effects of cilostazol are headache and diarrhea. Cilostazol is contraindicated in patients with severe heart failure.

ACE inhibitors have several beneficial effects. They are antiatherogenic and, by inhibiting the degradation of bradykinin and promoting the release of nitric oxide, are potent vasodilators. Among patients with intermittent claudication, a randomized trial of ramipril 10 mg po once/day showed a significant increase in pain-free and maximum treadmill walking times compared to placebo.

Other drugs that may relieve claudication are being studied; they include L- arginine (the precursor of endothelium-dependent vasodilator), nitric oxide, vasodilator prostaglandins, and angiogenic growth factors (eg, vascular endothelial growth factor [VEGF], basic fibroblast growth factor [bFGF]). . In patients with severe limb ischemia, long-term parenteral use of vasodilator prostaglandins may decrease pain and facilitate ulcer healing.

Percutaneous transluminal angioplasty (PTA)

PTA with or without stent insertion is the primary nonsurgical method for dilating vascular occlusions. PTA with stent insertion may keep the artery open better than balloon compression alone, with a lower rate of reocclusion. Stents work best in large arteries with high flow (iliac and renal); they are less useful for smaller arteries and for long occlusions.

Indications for PTA are similar to those for surgery:

  • Intermittent claudication that inhibits daily activities

  • Rest pain

  • Gangrene

Suitable lesions are flow-limiting, short iliac stenoses (< 3 cm) and short, single or multiple stenoses of the superficial femoropopliteal segment. Complete occlusions (up to 10 or 12 cm long) of the superficial femoral artery can be successfully dilated, but results are better for occlusions 5 cm. PTA is also useful for localized iliac stenosis proximal to a bypass of the femoropopliteal artery.

PTA is less useful for diffuse disease, long occlusions, and eccentric calcified plaques. Such lesions are particularly common in patients with diabetes, often affecting small arteries.

Complications of PTA include thrombosis at the site of dilation, distal embolization, intimal dissection with occlusion by a flap, and complications related to heparin use.

With appropriate patient selection (based on complete and adequate angiography), the initial success rate approaches 85 to 95% for iliac arteries and 50 to 70% for thigh and calf arteries. Recurrence rates are relatively high (25 to 35% at 3 years); repeat PTA may be successful.

Surgery

Surgery is indicated for patients who can safely tolerate a major vascular procedure and whose severe symptoms do not respond to noninvasive treatments. The goal is to relieve symptoms, heal ulcers, and avoid amputation. Because many patients have underlying coronary artery disease, which places them at risk of acute coronary syndromes during surgical procedures for PAD, patients usually undergo cardiac evaluation prior to surgery.

Thromboendarterectomy (surgical removal of an occlusive lesion) is used for short, localized lesions in the aortoiliac, common femoral, or deep femoral arteries.

Revascularization (eg, femoropopliteal bypass grafting) uses synthetic or natural materials (often the saphenous or another vein) to bypass occlusive lesions. Revascularization helps prevent limb amputation and relieve claudication.

Sympathectomy may be effective in patients who cannot undergo major vascular surgery, when a distal occlusion causes severe ischemic pain. Chemical sympathetic blocks are as effective as surgical sympathectomy, so the latter is rarely done.

Amputation is a procedure of last resort, indicated for uncontrolled infection, unrelenting rest pain, and progressive gangrene. Amputation should be as distal as possible, preserving the knee for optimal use with a prosthesis.

External compression therapy

External pneumatic compression of the lower limb to increase distal blood flow is an option for limb salvage in patients who have severe PAD and are not candidates for surgery. Theoretically, it controls edema and improves arterial flow, venous return, and tissue oxygenation, but data supporting its use are lacking. Pneumatic cuffs or stockings are placed on the lower leg and inflated rhythmically during diastole, systole, or part of both periods for 1 to 2 hours several times a week.

Stem cell transplantation

Bone marrow stem cells can differentiate into small blood vessels. Clinical trials are investigating autologous iliac crest bone marrow stem cell transplantation into legs of patients with critical limb ischemia. Although this therapy may not be appropriate for every patient, it may prove to be an alternative for some who would otherwise need major amputation; results of initial smaller trials have been encouraging but some blinded, placebo-controlled trials have failed to show benefit (3, 4).

Gene therapy

Gene therapy is also being studied. Gene transfer of DNA encoding VEGF may promote collateral blood vessel growth.

Treatment references

  • 1. Anand S, Bosch J, Eikelboom JW, et al, on behalf of the COMPASS Investigators: Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomized, double-blind, placebo controlled trial. Lancet 391(10117):218–229, 2018. doi: 10.1016/S0140-6736(17)32409-1

  • 2. Gerhard-Herman MD, Gornik HL, Barrett C, et al: 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease. Circulation 155:e686–e725, 2017.

  • 3. Rigato M, Monami M, Fadini GP: Autologous cell therapy for peripheral arterial disease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled Studies. Circ Res 120(8):1326–1340, 2017. doi: 10.1161/CIRCRESAHA.116.309045. Epub 2017 Jan 17. Review.

  • 4. Teraa M, Sprengers RW, Schutgens RE, et al: Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: The randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation 131(10):851–860, 2015. doi: 10.1161/CIRCULATIONAHA.114.012913. Epub 2015 Jan 7.

Key Points

  • Peripheral arterial disease (PAD) occurs almost always in the lower extremities.

  • 50 to 75% of patients also have significant cerebral and/or coronary atherosclerosis.

  • When symptomatic, PAD causes intermittent claudication, which is discomfort in the legs that occurs during walking and is relieved by rest; it is a manifestation of exercise-induced reversible ischemia, similar to angina pectoris.

  • Severe PAD may cause pain during rest, reflecting irreversible ischemia, or ischemic ulcers on the feet.

  • A low ( 0.90) ankle-brachial index (ratio of ankle to arm systolic blood pressure) indicates PAD.

  • Modify atherosclerosis risk factors; give statins, antiplatelet drugs, and sometimes angiotensin-converting enzyme inhibitors, rivaroxaban, pentoxifylline, or cilostazol.

  • Percutaneous transluminal angioplasty with or without stent insertion may dilate vascular occlusions; sometimes surgery (endarterectomy or bypass grafting) is necessary.

Click here for Patient Education
NOTE: This is the Professional Version. CONSUMERS: Click here for the Consumer Version
Professionals also read

Also of Interest

Videos

View All
Overview of Wolff-Parkinson-White Syndrome
Video
Overview of Wolff-Parkinson-White Syndrome
3D Models
View All
Aortic Dissection
3D Model
Aortic Dissection

SOCIAL MEDIA

TOP