Механізм типової реципрокності

Механізм типової реципрокності

Atrioventricular nodal reentry is used here as an example. Two pathways connect the same points. Pathway A has slower conduction and a shorter refractory period. Pathway B conducts normally and has a longer refractory period.

I. A normal impulse arriving at 1 goes down both A and B pathways. Conduction through pathway A is slower and finds tissue at 2 already depolarized and thus refractory. A normal sinus beat results.

II. A premature impulse finds pathway B refractory and is blocked, but it can be conducted on pathway A because its refractory period is shorter. On arriving at 2, the impulse continues forward and retrograde up pathway B, where it is blocked by refractory tissue at 3. A premature supraventricular beat with an increased PR interval results.

III. If conduction over pathway A is sufficiently slow, a premature impulse may continue retrograde all the way up pathway B, which is now past its refractory period. If pathway A is also past its refractory period, the impulse may reenter pathway A and continue to circle, sending an impulse each cycle to the ventricle (4) and retrograde to the atrium (5), producing a sustained reentrant tachycardia.