MRI Magnetic Resonance Imaging Sagittal T1-weighted image of the brain shows normal midline structures. Sagittal proton density–weighted 3-tesla magnetic resonance image of the right knee shows meniscocapsular separation... read more provides better resolution of neural structures than CT. This difference is most significant clinically for visualizing the following:
Cranial nerves
Brain stem lesions
Abnormalities of the posterior fossa
Spinal cord
CT images of these regions are often marred by bony streak artifacts. MRI is especially valuable for identifying spinal abnormalities (eg, tumor, abscess) compressing the spinal cord and requiring emergency intervention. Also, MRI is better for detecting demyelinating plaques, early infarction, subclinical brain edema, cerebral contusions, incipient transtentorial herniation, abnormalities of the craniocervical junction, and syringomyelia.
MRI is contraindicated if patients
Have had a pacemaker or cardiac or carotid stents for < 6 weeks
Have ferromagnetic aneurysm clips or other metallic objects that may overheat or be displaced within the body by the intense magnetic field
Visualization of inflammatory, demyelinated, and neoplastic lesions may require enhancement with IV paramagnetic contrast agents (eg, gadolinium). Although gadolinium is thought to be much safer than contrast agents used with CT, nephrogenic systemic fibrosis (nephrogenic fibrosing dermopathy) has been reported in patients with impaired renal function and acidosis. Before using gadolinium in patients with renal disease, clinicians should consult with a radiologist and a nephrologist.
There are several MRI techniques Variations of MRI Sagittal T1-weighted image of the brain shows normal midline structures. Sagittal proton density–weighted 3-tesla magnetic resonance image of the right knee shows meniscocapsular separation... read more ; choice of technique depends on the specific tissue, location, and suspected disorder:
Diffusion-weighted imaging (DWI) allows rapid, early detection of ischemic stroke Ischemic Stroke Ischemic stroke is sudden neurologic deficits that result from focal cerebral ischemia associated with permanent brain infarction (eg, positive results on diffusion-weighted MRI). Common causes... read more
and helps distinguish cerebral abscess Brain Abscess A brain abscess is an intracerebral collection of pus. Symptoms may include headache, lethargy, fever, and focal neurologic deficits. Diagnosis is by contrast-enhanced MRI or CT. Treatment is... read more
from tumor Overview of Intracranial Tumors Intracranial tumors may involve the brain or other structures (eg, cranial nerves, meninges). The tumors usually develop during early or middle adulthood but may develop at any age; they are... read more
. It can also help diagnose Creutzfeld-Jacob disease Creutzfeldt-Jakob Disease (CJD) Creutzfeldt-Jakob disease (CJD) is the most common human prion disease. It occurs worldwide and has several forms and subtypes. CJD symptoms include dementia, myoclonus, and other central nervous... read more .
Perfusion-weighted imaging (PWI) can detect areas of hypoperfusion in early ischemic stroke but cannot yet reliably distinguish areas with benign oligemia from those with injurious hypoperfusion due to infarction.
Diffusion tensor imaging (DTI) is an extension of DWI that can show white matter tracts in 3 dimensions (tractography) and can be used to monitor the integrity of CNS tracts affected by aging and disease.
Double inversion recovery (DIR), used in research centers, can detect demyelination of gray matter better than other MRI techniques; gray matter demyelination is now considered common in multiple sclerosis Multiple Sclerosis (MS) Multiple sclerosis (MS) is characterized by disseminated patches of demyelination in the brain and spinal cord. Common symptoms include visual and oculomotor abnormalities, paresthesias, weakness... read more
.
Functional MRI (fMRI) shows which brain regions are activated (shown by increased flow of oxygenated blood) by a specific cognitive or motor task, but its clinical use is still being defined.
Magnetic resonance angiography (MRA) uses MRI with or without a contrast agent to show cerebral vessels and major arteries and their branches in the head and neck. Although MRA has not replaced cerebral angiography Cerebral catheter angiography X-rays taken after a radiopaque agent is injected via an intra-arterial catheter show individual cerebral arteries and venous structures of the brain. With digital data processing (digital subtraction... read more , it is used when cerebral angiography cannot be done (eg, because the patient refuses or has increased risk). As a check for stroke, MRA tends to exaggerate severity of arterial narrowing and thus does not usually miss occlusive disease of large arteries.
Susceptibility-weighted angiography (SWAN) can be useful in evaluating bleeding. It allows better visualization of both large and small blood vessels, microhemorrhages, and deposits of calcium and iron in the brain.
Magnetic resonance venography (MRV) uses MRI to show the major veins and dural sinuses of the cranium. MRV obviates the need for cerebral angiography in diagnosing cerebral venous thrombosis and is useful for monitoring thrombus resolution and guiding the duration of anticoagulation.
Magnetic resonance spectroscopy can measure metabolites in the brain regionally to distinguish tumors from abscess or stroke.