MSD Manual

Please confirm that you are a health care professional

honeypot link

Cardiac Imaging Tests

By

Thomas Cascino

, MD, MSc, Michigan Medicine, University of Michigan;


Michael J. Shea

, MD, Michigan Medicine at the University of Michigan

Reviewed/Revised Jul 2021 | Modified Sep 2022
View Patient Education
Topic Resources

Cardiac imaging tests can delineate cardiac structure and function. Standard imaging tests include

Standard CT and MRI have limited application because the heart constantly beats, but faster CT and magnetic resonance techniques can provide useful cardiac images if the rhythm is regular and the heart rate is controlled; sometimes patients are given a drug (eg, a beta-blocker) to slow the heart rate during imaging.

In ECG gating, the image recording (or reconstruction) is synchronized with the electrocardiogram (ECG), providing information from several cardiac cycles that can be used to create single images of selected points in the cardiac cycle.

CT gating uses the ECG to trigger the x-ray beam at the desired portion of the cardiac cycle, exposing the patient to less radiation than gating that simply reconstructs information from only the desired portion of the cardiac cycle (gated reconstruction) and does not interrupt the x-ray beam.

Chest x-rays

Chest x-rays are often useful as a starting point in a cardiac diagnosis and should always be done when a diagnosis of heart failure Diagnosis Heart failure (HF) is a syndrome of ventricular dysfunction. Left ventricular (LV) failure causes shortness of breath and fatigue, and right ventricular (RV) failure causes peripheral and abdominal... read more Diagnosis is considered. Posteroanterior and lateral views provide a gross view of atrial and ventricular size and shape and pulmonary vasculature, but additional tests are almost always required for precise characterization of cardiac structure and function.

CT

Spiral (helical) CT may be used to evaluate pericarditis Pericarditis Pericarditis is inflammation of the pericardium, often with fluid accumulation in the pericardial space. Pericarditis may be caused by many disorders (eg, infection, myocardial infarction, trauma... read more Pericarditis , congenital cardiac disorders Overview of Congenital Cardiovascular Anomalies Congenital heart disease is the most common congenital anomaly, occurring in almost 1% of live births ( 1). Among birth defects, congenital heart disease is the leading cause of infant mortality... read more Overview of Congenital Cardiovascular Anomalies (especially abnormal arteriovenous connections), disorders of the great vessels (eg, aortic aneurysm Overview of Aortic Aneurysms Aneurysms are abnormal dilations of arteries caused by weakening of the arterial wall. Common causes include hypertension, atherosclerosis, infection, trauma, and hereditary or acquired connective... read more Overview of Aortic Aneurysms , aortic dissection Aortic Dissection Aortic dissection is the surging of blood through a tear in the aortic intima with separation of the intima and media and creation of a false lumen (channel). The intimal tear may be a primary... read more Aortic Dissection ), cardiac tumors Cardiac Tumors Cardiac tumors may be primary (benign or malignant) or metastatic (malignant). Myxoma, a benign tumor, is the most common type of primary cardiac tumor. Cardiac tumors may occur in any cardiac... read more Cardiac Tumors , acute pulmonary embolism Pulmonary Embolism (PE) Pulmonary embolism (PE) is the occlusion of pulmonary arteries by thrombi that originate elsewhere, typically in the large veins of the legs or pelvis. Risk factors for pulmonary embolism are... read more Pulmonary Embolism (PE) , chronic pulmonary thromboembolic disease, and arrhythmogenic right ventricular dysplasia. However, CT requires a radiopaque contrast agent, which may limit its use in patients with renal impairment.

Abnormal CT of the Heart
Contrast CT Showing Normal Coronary Arteries

Electron beam CT, formerly called ultrafast CT or cine CT, unlike conventional CT, does not use a moving x-ray source and target. Instead, the direction of the x-ray beam is guided by a magnetic field and detected by an array of stationary detectors. Because mechanical motion is not required, images can be acquired in a fraction of a second (and recorded at a specific point in the cardiac cycle). Electron beam CT is used primarily to detect and quantify coronary artery calcification, an early sign of atherosclerosis. However, spatial resolution is poor and the equipment cannot be used for noncardiac disorders, so newer standard CT techniques are becoming preferred for cardiac use.

Multidetector CT (MDCT), with 64 detectors, has a very rapid scan time; some advanced machines may generate an image from a single heartbeat, although typical acquisition time is 30 seconds. Dual-source CT uses 2 x-ray sources and 2 multidetector arrays on a single gantry, which cuts scan time in half. Both of these modalities appear able to identify coronary calcifications and flow-limiting (ie, > 50% stenosis) coronary artery obstruction. Typically, an IV contrast agent is used, although nonenhanced scans can detect coronary artery calcification.

MDCT is currently used mainly for patients with indeterminate stress imaging test results as a noninvasive alternative to coronary angiography Angiography Cardiac catheterization is the passage of a catheter through peripheral arteries or veins into cardiac chambers, the pulmonary artery, and coronary arteries and veins. Cardiac catheterization... read more Angiography . The primary benefit of MDCT appears to be to rule out clinically significant coronary artery disease (CAD) in patients who are at low or intermediate risk of CAD. Although the radiation dose can be significant, about 15 mSv (vs 0.1 mSv for a chest x-ray and 7 mSv for coronary angiography), newer imaging protocols can reduce the exposure to 5 to 10 mSv. The presence of high-density calcified plaques creates imaging artifacts that interfere with interpretation. Nonenhanced scans to evaluate for coronary artery calcification can be done with even lower radiation exposure. The amount of coronary artery calcium present can be used to determine10-year risk of CAD. Recent studies suggest that absence of coronary artery calcium portends a very favorable prognosis.

MRI

Sequential MRI after injecting a paramagnetic contrast agent (gadolinium-diethylenetriamine pentaacetic acid [Gd-DTPA]) produces higher resolution of myocardial perfusion patterns than does radionuclide imaging. MRI is generally considered the most accurate and reliable measure of ventricular volumes as well as ejection fraction. However, patients with impaired renal function can develop nephrogenic systemic fibrosis Disadvantages of MRI Sagittal T1-weighted image of the brain shows normal midline structures. Sagittal proton density–weighted 3-tesla magnetic resonance image of the right knee shows meniscocapsular separation... read more Disadvantages of MRI , a potentially life-threatening disorder, after use of gadolinium contrast. Contrast agents are being developed that are safe to use in patients with impaired renal function.

When MRI is done with contrast, 3-dimensional information on infarct size and location can be obtained, and blood flow velocities in cardiac chambers can be measured. MRI can assess tissue viability by assessing the contractile response to inotropic stimulation with dobutamine or by using a contrast agent (eg, Gd-DTPA, which is excluded from cells with intact membranes). MRI discriminates myocardial scar from inflammation with edema. In patients with Marfan syndrome Marfan Syndrome Marfan syndrome consists of connective tissue anomalies resulting in ocular, skeletal, and cardiovascular abnormalities (eg, dilation of ascending aorta, which can lead to aortic dissection)... read more Marfan Syndrome , MRI measurements of ascending aorta dilation are more accurate than echocardiographic measurements.

Magnetic resonance angiography (MRA) is used to assess blood volumes of interest (eg, blood vessels in the chest or abdomen); all blood flow can be assessed simultaneously. MRA can be used to detect aneurysms, stenosis, or occlusions in the carotid, coronary, renal, or peripheral arteries. Use of this technique to detect deep venous thrombosis is being studied.

Positron emission tomography (PET)

PET can demonstrate myocardial perfusion and metabolism and is sometimes used to assess myocardial viability or to assess myocardial perfusion after an equivocal single-photon emission CT (SPECT) study or in very obese patients.

Perfusion agents are radioactive nuclides that are used to trace the amount of blood flow entering a specific region and are therefore useful in unmasking myocardial perfusion deficits not evident at rest. They include carbon-11 (C-11) carbon dioxide, oxygen-15 (O-15) water, nitrogen-13 (N-13) ammonia, and rubidium-82 (Rb-82). Only Rb-82 does not require an on-site cyclotron.

Metabolic agents are radioactive analogs of normal biologic substances that are taken up and metabolized by cells. They include

  • Fluorine-18 (F-18)–labeled deoxyglucose (FDG)

  • C-11 acetate

FDG detects the enhancement of glucose metabolism under ischemic conditions, and can thus distinguish ischemic but still viable myocardium from scar tissue. Sensitivity is greater than with myocardial perfusion imaging, possibly making FDG imaging useful for selecting patients for revascularization and for avoiding such procedures when only scar tissue is present. This use may justify the greater expense of PET. Half-life of F-18 is long enough (110 min) that FDG can often be produced off-site. Techniques that enable FDG imaging to be used with conventional SPECT cameras may make this type of imaging widely available. FDG has also been used to detect inflammatory cardiovascular disorders (eg, infected pacemaker wires, aortic vasculitis, cardiac sarcoidosis).

Carbon-11 acetate uptake appears to reflect overall oxygen metabolism by myocytes. Uptake does not depend on such potentially variable factors as blood glucose levels, which can affect FDG distribution. C-11 acetate imaging may better predict postintervention recovery of myocardial function than FDG imaging. However, because of a 20-minute half-life, C-11 must be produced by an on-site cyclotron.

View Patient Education
NOTE: This is the Professional Version. CONSUMERS: View Consumer Version
quiz link

Test your knowledge

Take a Quiz! 
iOS ANDROID
iOS ANDROID
iOS ANDROID
TOP