遺伝子診断技術

執筆者:David N. Finegold, MD, University of Pittsburgh
レビュー/改訂 2019年 9月
意見 同じトピックページ はこちら

    遺伝子診断技術は急速に発展している。ポリメラーゼ連鎖反応(PCR)法でDNAまたはRNAを増幅することで,遺伝子または遺伝子断片のコピーを大量に複製することが可能である。

    遺伝学の概要も参照のこと。)

    遺伝子プローブを用いれば,特定の正常または変異DNA断片の位置を同定することが可能である。様々な種類のプローブにより,幅広い大きさのDNA配列を検討することができる。既知のDNA分節をクローニングして蛍光分子で標識することもでき(蛍光in situハイブリダイゼーション[FISH]法を用いる),続いてそのDNA断片を検査試料と混合する。標識したDNAが相補的なDNA断片に結合するため,蛍光の量と種類を測定することで検出が可能となる。遺伝子プローブを使用することで,いくつかの疾患を出生前後に検出することができる。

    オリゴヌクレオチドアレイ(プローブ)は,現在では特定の染色体におけるDNA配列の欠失または重複領域のゲノムワイドな同定にルーチンに用いられている別の種類のプローブである。多くのオリゴヌクレオチドプローブを用いて患者のDNAを参照ゲノムと比較する。このようなプローブを用いて,ゲノム全体を検査(query)することができる。

    マイクロチップは,DNA変異,RNA断片,またはタンパク質の同定に使用できる強力なツールである。単一のチップにより,1検体のみで数百万のDNA変化を検査することが可能である。オリゴヌクレオチドアレイと比べて,マイクロチップはgenome queryに対してより繊細な分解能をもたらす。

    次世代シークエンシング技術により,遺伝子診断のアプローチは劇的に変化した。この技術では,ゲノム全体を小さな断片に分割し,断片の塩基配列を決定した後,高度なコンピューター技術を用いて配列を再構成し,ゲノム全体またはより限定的な領域(エクソームとして知られるゲノムの発現部分など)の配列を1塩基単位で特定する。この手法は,単一または複数の塩基の多型だけでなく,挿入や欠失がある領域を同定するのにも役立つ。この技術は,かかる費用が劇的に減少しており,現在も減り続けている。装置と計算方法の改良も続いている。

    この革命的技術により,遺伝子診断の技術的側面の多くの部分が次世代シークエンシングに移行している。この技術は,今後も急速に発展するにつれて,遺伝子診断の主流になると考えられる。しかしながら,エクソームまたはゲノムシークエンシングは非常に多くの情報をもたらすことから,結果の解釈を複雑化する様々な問題が生じている。それらの問題を考慮しても,この技術は今後主流になると考えられる。

    quizzes_lightbulb_red
    Test your KnowledgeTake a Quiz!
    医学事典MSDマニュアル モバイルアプリ版はこちら!ANDROID iOS
    医学事典MSDマニュアル モバイルアプリ版はこちら!ANDROID iOS
    医学事典MSDマニュアル モバイルアプリ版はこちら!ANDROID iOS